This ad listing is expired.
0

Giải bài tập SGK toán 9 tập 1 Phần Đại Số – Chương 1-Bài 1: Căn bậc hai

Tỉnh/Thành phốHà Nội
Quốc giaVietnam

Để xem lời giải chi tiết SGK Toán lớp 3,4,5,6,7,8,9,10,11,12 vui lòng truy cập website : edusmart.vn

 

Trả lời câu hỏi Toán 9 Tập 1 Bài 1 trang 4: Tìm các căn bậc hai của mỗi số sau:

a) 9; b) 4/9; c) 0,25; d) 2.

Lời giải

a) Căn bậc hai của 9 là 3 và -3 (vì 32 = 9 và (-3)2 = 9)

b) Căn bậc hai của 4/9 là 2/3 và (-2)/3 (vì (2/3)2 = 4/9 và(-2/3)2 = 4/9)

c) Căn bậc hai của 0,25 là 0,5 và -0,5 (vì 0,52 = 0,25 và (-0,5)2 = 0,25)

d) Căn bậc hai của 2 là √2 và -√2 (vì (√2)2 = 2 và(-√2)2 = 2 )

Trả lời câu hỏi Toán 9 Tập 1 Bài 1 trang 5: Tìm căn bậc hai số học của mỗi số sau:

a) 49;        b) 64;        c) 81;        d) 1,21.

Lời giải

a) √49 = 7, vì 7 ≥ 0 và 72 = 49

b) √64 = 8, vì 8 ≥ 0 và 82 = 64

c) √81 = 9, vì 9 ≥ 0 và 92 = 81

d) √1,21 = 1,1 vì 1,1 ≥ 0 và 1,12 = 1,21

Trả lời câu hỏi Toán 9 Tập 1 Bài 1 trang 5: Tìm căn bậc hai của mỗi số sau:

a) 64;        b) 81;        c) 1,21.

Lời giải

a) Các căn bậc hai của 64 là 8 và -8

b) Các căn bậc hai của 81 là 9 và -9

c) Các căn bậc hai của 1,21 là 1,1 và -1,1

Trả lời câu hỏi Toán 9 Tập 1 Bài 1 trang 6: So sánh

a) 4 và √15;        b) √11 và 3.

Lời giải

a) 16 > 15 nên √16 > √15. Vậy 4 > √15

b) 11 > 9 nên √11 > √9. Vậy √11 > 3

Trả lời câu hỏi Toán 9 Tập 1 Bài 1 trang 6: Tìm số x không âm, biết:

a) √x > 1;        b) √x < 3.

Lời giải

a) 1 = √1, nên √x > 1 có nghĩa là √x > √1

Vì x ≥ 0 nên √x > √1 ⇔ x > 1. Vậy x > 1

b) 3 = √9, nên √x < 3 có nghĩa là √x < √9

Vì x ≥ 0 nên √x < √9 ⇔ x < 9. Vậy x < 9

Bài 1 (trang 6 SGK Toán 9 Tập 1): Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng:

121; 144; 169; 225; 256; 324; 361; 400

Lời giải:

Ta có: √121 = 11 vì 11 > 0 và 112 = 121 nên

Căn bậc hai số học của 121 là 11. Căn bậc hai của 121 là 11 và – 11.

Tương tự:

Căn bậc hai số học của 144 là 12. Căn bậc hai của 144 là 12 và -12.

Căn bậc hai số học của 169 là 13. Căn bậc hai của 169 là 13 và -13.

Căn bậc hai số học của 225 là 15. Căn bậc hai của 225 là 15 và -15.

Căn bậc hai số học của 256 là 16. Căn bậc hai của 256 là 16 và -16.

Căn bậc hai số học của 324 là 18. Căn bậc hai của 324 là 18 và -18.

Căn bậc hai số học của 361 là 19. Căn bậc hai của 361 là 19 và -19.

Căn bậc hai số học của 400 là 20. Căn bậc hai của 400 là 20 và -20.

Bài 1 (trang 6 SGK Toán 9 Tập 1): Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng:

121; 144; 169; 225; 256; 324; 361; 400

Lời giải:

Ta có: √121 = 11 vì 11 > 0 và 112 = 121 nên

Căn bậc hai số học của 121 là 11. Căn bậc hai của 121 là 11 và – 11.

Tương tự:

Căn bậc hai số học của 144 là 12. Căn bậc hai của 144 là 12 và -12.

Căn bậc hai số học của 169 là 13. Căn bậc hai của 169 là 13 và -13.

Căn bậc hai số học của 225 là 15. Căn bậc hai của 225 là 15 và -15.

Căn bậc hai số học của 256 là 16. Căn bậc hai của 256 là 16 và -16.

Căn bậc hai số học của 324 là 18. Căn bậc hai của 324 là 18 và -18.

Căn bậc hai số học của 361 là 19. Căn bậc hai của 361 là 19 và -19.

Căn bậc hai số học của 400 là 20. Căn bậc hai của 400 là 20 và -20.

Bài 1 (trang 6 SGK Toán 9 Tập 1): Tìm căn bậc hai số học của mỗi số sau rồi suy ra căn bậc hai của chúng:

121; 144; 169; 225; 256; 324; 361; 400

Lời giải:

Ta có: √121 = 11 vì 11 > 0 và 112 = 121 nên

Căn bậc hai số học của 121 là 11. Căn bậc hai của 121 là 11 và – 11.

Tương tự:

Căn bậc hai số học của 144 là 12. Căn bậc hai của 144 là 12 và -12.

Căn bậc hai số học của 169 là 13. Căn bậc hai của 169 là 13 và -13.

Căn bậc hai số học của 225 là 15. Căn bậc hai của 225 là 15 và -15.

Căn bậc hai số học của 256 là 16. Căn bậc hai của 256 là 16 và -16.

Căn bậc hai số học của 324 là 18. Căn bậc hai của 324 là 18 và -18.

Căn bậc hai số học của 361 là 19. Căn bậc hai của 361 là 19 và -19.

Căn bậc hai số học của 400 là 20. Căn bậc hai của 400 là 20 và -20.

Bài 2 (trang 6 SGK Toán 9 Tập 1): So sánh:

a) 2 và √3 ;     b) 6 và √41 ;     c) 7 và √47

Lời giải:

a) 2 = √4

Vì 4 > 3 nên √4 > √3 (định lí)

Vậy 2 > √3

b) 6 = √36

Vì 36 < 41 nên √36 < √41

Vậy 6 < √41

c) 7 = √49

Vì 49 > 47 nên √49 > √47

Vậy 7 > √47

Bài 3 (trang 6 SGK Toán 9 Tập 1): Dùng máy tính bỏ túi, tính giá trị gần đúng của nghiệm mỗi phương tình sau (làm tròn đến chữ số thập phân thứ ba):

a) x2 = 2 ;         b) x2 = 3

c) x2 = 3,5 ;         d) x2 = 4,12

Hướng dẫn: Nghiệm của phương trình x2 = a ( với a ≥ 0) là các căn bậc hai của a.

Lời giải:

a) x2 = 2 => x1 = √2 và x2 = -√2

Dùng máy tính bỏ túi ta tính được:

√2 ≈ 1,414213562

Kết quả làm tròn đến chữ số thập phân thứ ba là:

x1 = 1,414; x2 = – 1,414

b) x2 = 3 => x1 = √3 và x2 = -√3

Dùng máy tính ta được:

√3 ≈ 1,732050907

Vậy x1 = 1,732; x2 = – 1,732

c) x2 = 3,5 => x1 = √3,5 và x2 = -√3,5

Dùng máy tính ta được:

√3,5 ≈ 1,870828693

Vậy x1 = 1,871; x2 = – 1,871

d) x2 = 4,12 => x1 = √4,12 và x2 = -√4,12

Dùng máy tính ta được:

√4,12 ≈ 2,029778313

Vậy x1 = 2,030 ; x2 = – 2,030

Bài 4 (trang 7 SGK Toán 9 Tập 1): Tìm số x không âm, biết:

a) √x = 15;         b) 2√x = 14

c) √x < √2;         d) √2x < 4

Lời giải:

a) Ta có: √x = 15 => x = 152

⇔ x = 225

Vậy x = 225

b) 2√x = 14 ⇔ √x = 7

⇔ x = 72 ⇔ x = 49

Vậy x = 49

c) √x < √2 ⇔ x < 2

Vậy 0 ≤ x < 2

d) Vì 4 = √16 nên √2x < 4 có nghĩa là √2x < 16

⇔ 2x < 16

⇔ x < 8 ( x ≥ 0)

Vậy 0 ≤ x ≤ 8

Bài 5 (trang 7 SGK Toán 9 Tập 1): Đố. Tính cạnh một hình vuông, biết diện tích của nó bằng diện tích của hình chữ nhật có chiều rộng 3,5m và chiều dài 14m.

Giải bài tập SGK toán 9 tập 1 Phần Đại Số - Chương 1-Bài 1: Căn bậc hai

Hình 1

Lời giải:

Diện tích hình chữ nhật: SHCN = 3,5.14 = 49 (m2)

Gọi a (m) (a > 0) là độ dài của cạnh hình vuông. Suy ra diện tích hình vuông là

SHV = a2 = 49 (m2)

=> a = 7 (m)

Vậy cạnh hình vuông có độ dài là 7m.

Ghi chú: Nếu ta cắt đôi hình chữ nhật thành hai hình chữ nhật có kích thước 3,5m x 7m thì ta sẽ ghép được hình vuông có cạnh là 7m.

Xem thêm lời giải chi tiết, video và nhiều tài liệu hay của chương trình toán lớp 9 tại edusmart.vn

31/08/2018 09:49

This ad has expired

Listing ID 4655b890ef67ee21 85 total views, 1 today
Report problem
Processing your request, Please wait....

Liên hệ người đăng tin

Avatar of edusmart

edusmart

Listing Owner Member Since: 31/03/2018

Comments